

Comparative analysis of design codes for portable offshore units

Eduardo Pérez Bódalo

Supervisor: Dr Inż. Tomasz Urbański

Master thesis developed in the framework of the Erasmus Mundus Master Course in Integrated Advanced Ship Design

Gdynia, February 19th 2013

INDEX

- **1. INTRODUCTION**
- 2. METHODOLOGY
- **3. LOADS CALCULATION & APPLICATION**
- 4. CAPACITY MODELS
- 5. CONCLUSIONS

INDEX

1. INTRODUCTION

2. METHODOLOGY

3. LOADS CALCULATION & APPLICATION

4. CAPACITY MODELS

5. CONCLUSIONS

A comparative analysis between four design codes has been carried out for a portable offshore unit in this master thesis.

The purpose of this comparison is to sort the codes in order to the conservative-non conservative results.

Erasmus Mundus Master Course in Integrated Advanced Ship Design

Master Thesis | Eduardo Pérez Bódalo

American Petroleum Institute (API) API RP 2A-WSD API RP 2A-WSD

European Standards (Eurocodes or EN)

EN 1991-1-1,3,4 EN 1993-1-1,8

International Standards (ISO) ISO 19902 ISO 19906

Norwegian Standards (Norsok, NS or N) N-001 N-003 N-004

Erasmus Mundus Master Course in Integrated Advanced Ship Design

Master Thesis | Eduardo Pérez Bódalo

According to DNV Standard 2.7-3:

- PO Units are intended for offshore transportation and installation/lifting
- Designed to carry equipment over its main frame to be lifted from deck to deck
- Not intended to carry general cargo
- Maximum mass between 25 100 t

Erasmus Mundus Master Course in Integrated Advanced Ship Design

Master Thesis | Eduardo Pérez Bódalo

INDEX

1. INTRODUCTION

2. METHODOLOGY

3. LOADS CALCULATION & APPLICATION

4. CAPACITY MODELS

5. CONCLUSIONS

Combined load cases

	Combined load cases								
	00	01_N	02_NE	03_E	04_SE	05_S	06_SW	07_W	08_NW
Load cases									
LC00_Grav	x								
LC01_Struc	х								
LC02_Equip	х								
LC03_Pip	х					. 00			
LC04_Inst	х				ULS	00			
LC05_Elec	х								
LC06_Var	x								
LC07_Live	x								
LC08_Wind_N		х							
LC09_Wind_NE			х						
LC10_Wind_E				х					
LC11_Wind_SE					х				
LC12_Wind_S						x			
LC13_Wind_SW							х		
LC14_Wind_W								х	
LC15_Wind_NW									x
LC16_lce	х								

EMship Advanced Design

Combined load cases

INDEX

1. INTRODUCTION

2. METHODOLOGY

3. LOADS CALCULATION & APPLICATION

4. CAPACITY MODELS

5. CONCLUSIONS

- Used to check the allowable stress levels on beams
- This check is performed through the use of the equations presented in the various code checking standards
- An *usage factor* is the result of these equations presented in codes:
 - If UF < 1.0, member is safe
 - If UF > 1.0, member is overloaded

Analysis 1: API

	Member	LoadCase	Position	Usage factor	Formula
	Long_1	ULS02_NE	0.50	0.62	uf3313
	Long_13	ULS06_SW	0.50	0.59	uf3313
	Transv_1	ULS06_SW	0.63	0.50	uf3313
Primary structure	Transv_2	ULS01_N	0.50	0.14	uf3313
	Transv_3	ULS05_S	0.50	0.12	uf3313
	Transv_4	ULS05_S	0.44	0.14	uf3313
	Transv_5	ULS02_NE	0.48	0.13	uf3313
	Long_2	ULS06_SW	0.00	0.23	uf3313
	Long_3	ULS06_SW	0.83	0.30	uf3313
	Long_4	ULS04_SE	0.25	0.29	uf3313
	Long_5	ULS06_SW	0.00	0.23	uf3313
	Long_6	ULS08_NW	0.17	0.28	uf3313
Secondary structure	Long_7	ULS08_NW	0.81	0.28	uf3313
	Long_8	ULS08_NW	0.00	0.18	uf3313
	Long_9	ULS02_NE	0.00	0.22	uf3313
	Long_10	ULS08_NW	1.00	0.20	uf3313
	Long_11	ULS08_NW	0.67	0.29	uf3313
	Long_12	ULS02_NE	0.17	0.29	uf3313

However,

how can design codes be compared?

There are four main aspects related to the codes that determine UF:

- 1) Acting loads
- 2) Combined load cases factors
- 3) Security factors
- 4) Formulation for usage factors

- 1) Acting loads formulation
 - Each code has his own formulas for load calculation.
 - Obviously, no changes can be done in these formulas.

However, two "modifications" can be done to compare the codes:

A) Apply their own loads for each code.

B) Apply the same loads for the four codes, e.g., the maximum one.

- 2) Combined load cases factors (CLC factors)
 - Each code has his own CLC factors.

	ΑΡΙ							
Load case name	Ν	NE	E	SE	S	SW	W	NW
LC00_Grav *	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC01_Struc	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC02_Equip	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LCO3_Pip	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC04_Inst	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC05_Elec	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC06_Var	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC07_Live	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LC08_Wind_N	1.35	-	-	-	-	-	-	-
LC09_Wind_NE	-	1.35	-	-	-	-	-	-
LC10_Wind_E	-	-	1.35	-	-	-	-	-
LC11_Wind_SE	-	-	-	1.35	-	-	-	-
LC12_Wind_S	-	-	-	-	1.35	-	-	-
LC13_Wind_SW	-	-	-	-	-	1.35	-	-
LC14_Wind_W	-	-	-	-	-	-	1.35	-
LC15_Wind_NW	-	-	-	-	-	-	-	1.35
LC16_lce	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35

- 2) Combined load cases factors (CLC factors)
 - Each code has his own CLC factors.

	Eurocode							
Load case name	Ν	NE	E	SE	S	SW	W	NW
LC00_Grav *	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
LC01_Struc	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
LC02_Equip	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
LCO3_Pip	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
LC04_Inst	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
LC05_Elec	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
LC06_Var	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
LC07_Live	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
LC08_Wind_N	0.6	-	-	-	-	-	-	-
LC09_Wind_NE	-	0.6	-	-	-	-	-	-
LC10_Wind_E	-	-	0.6	-	-	-	-	-
LC11_Wind_SE	-	-	-	0.6	-	-	-	-
LC12_Wind_S	-	-	-	-	0.6	-	-	-
LC13_Wind_SW	-	-	-	-	-	0.6	-	-
LC14_Wind_W	-	-	-	-	-	-	0.6	-
LC15_Wind_NW	-	-	-	-	-	-	-	0.6
LC16_lce	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7

- 2) Combined load cases factors (CLC factors)
 - Each code has his own CLC factors.

	ISO							
Load case name	Ν	NE	Е	SE	S	SW	W	NW
LC00_Grav *	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC01_Struc	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC02_Equip	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LCO3_Pip	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC04_Inst	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC05_Elec	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC06_Var	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LC07_Live	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LC08_Wind_N	1.35	-	-	-	-	-	-	-
LC09_Wind_NE	-	1.35	-	-	-	-	-	-
LC10_Wind_E	-	-	1.35	-	-	-	-	-
LC11_Wind_SE	-	-	-	1.35	-	-	-	-
LC12_Wind_S	-	-	-	-	1.35	-	-	-
LC13_Wind_SW	-	-	-	-	-	1.35	-	-
LC14_Wind_W	-	-	-	-	-	-	1.35	-
LC15_Wind_NW	-	-	-	-	-	-	-	1.35
LC16_lce	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

- 2) Combined load cases factors (CLC factors)
 - Each code has his own CLC factors.

	Norsok							
Load case name	Ν	NE	E	SE	S	SW	W	NW
LC00_Grav *	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC01_Struc	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC02_Equip	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC03_Pip	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC04_Inst	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC05_Elec	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
LC06_Var	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LC07_Live	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LC08_Wind_N	0.7	-	-	-	-	-	-	-
LC09_Wind_NE	-	0.7	-	-	-	-	-	-
LC10_Wind_E	-	-	0.7	-	-	-	-	-
LC11_Wind_SE	-	-	-	0.7	-	-	-	-
LC12_Wind_S	-	-	-	-	0.7	-	-	-
LC13_Wind_SW	-	-	-	-	-	0.7	-	-
LC14_Wind_W	-	-	-	-	-	-	0.7	-
LC15_Wind_NW	-	-	-	-	-	-	-	0.7
LC16_lce	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7

- 2) Combined load cases factors (CLC factors)
 - Each code has his own CLC factors.

Two options can be performed to compare the codes:

A) Use their own CLC factors for each code

B) Use the same CLC factors for all of them, e.g., 1.0

- 3) Security factors
 - Some codes has their own security factors.
 - For all the codes, security factors have been taken as one.

- 4) Formulation for usage factors
 - Each code has his own formulas for UFs
 - Obviously, no changes can be done

Aspects related to the codes that determine UF:

- 1) Acting loads formulation
- 2) Combined load cases factors
- 3) Security factors
- 4) Usage factors formulation

- Combinations can be just made with 1) and 2)
 1) Acting loads formulation
 - A) Own loads for each code
 - B) Same loads for all the codes
 - 2) CLC factors
 - A) Own CLC factors for each code
 - B) Same CLC factors for all the codes
- Four possible combinations: 1A-2A, 1A-2B, 1B-2A, 1B-2B
- Different scenarios were built for capacity models comparison

Capacity models comparison

EMship Advanced Design

Erasmus Mundus Master Course in Integrated Advanced Ship Design

Master Thesis | Eduardo Pérez Bódalo

INDEX

- **1. INTRODUCTION**
- 2. METHODOLOGY
- **3. LOADS CALCULATION & APPLICATION**
- 4. CAPACITY MODELS
- 5. CONCLUSIONS

- 1) Acting loads formulation
 - Differences in loads do not have almost any influence in the final results
 - This was obvious even before running the analysis; the

differences between own loads were reduced to wind loads.

	API (kN)	Eurocode (kN)	ISO (kN)	Norsok (kN)
LC08_Wind_N	4.20	7.75	4.20	4.20
LC09_Wind_NE	5.00	8.25	5.00	5.00
LC10_Wind_E	3.00	4.10	3.00	3.00
LC11_Wind_SE	4.60	7.55	4.60	4.60
LC12_Wind_S	4.80	8.78	4.80	4.80
LC13_Wind_SW	5.50	9.09	5.50	5.50
LC14_Wind_W	3.50	4.77	3.50	3.50
LC15_Wind_NW	6.10	10.16	6.10	6.10

2) Combined load cases factors

Scenario	Analysis	Load calculation (1)	CLC factors (2)
1	1-4	Own loads	Own CLC
2	5-8	Own loads	Equal CLC
3	9-12	Equal load	Own CLC
4	13-16	Equal load	Equal CLC

• Interesting comparison would be 1 vs 2 and 3 vs 4

2) Combined load cases factors

- API is largely the most conservative code.
- Scenario 3 vs 4, average value for all the beams

Master Thesis | Eduardo Pérez Bódalo

• Race for the most conservative code

Thank you for your attention Dziękuję bardzo za uwagę Muchas gracias por su atención

Erasmus Mundus Master Course in Integrated Advanced Ship Design

Master Thesis | Eduardo Pérez Bódalo